Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(X), s1(Y)) -> QUOT2(minus2(X, Y), s1(Y))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
QUOT2(s1(X), s1(Y)) -> MINUS2(X, Y)
ACTIVATE1(n__zWquot2(X1, X2)) -> ZWQUOT2(X1, X2)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> QUOT2(X, Y)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(X), s1(Y)) -> QUOT2(minus2(X, Y), s1(Y))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
QUOT2(s1(X), s1(Y)) -> MINUS2(X, Y)
ACTIVATE1(n__zWquot2(X1, X2)) -> ZWQUOT2(X1, X2)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> QUOT2(X, Y)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MINUS2(s1(X), s1(Y)) -> MINUS2(X, Y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( MINUS2(x1, x2) ) = x1


POL( s1(x1) ) = x1 + 1



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(X), s1(Y)) -> QUOT2(minus2(X, Y), s1(Y))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


QUOT2(s1(X), s1(Y)) -> QUOT2(minus2(X, Y), s1(Y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( minus2(x1, x2) ) = max{0, -1}


POL( 0 ) = max{0, -1}


POL( s1(x1) ) = 1


POL( QUOT2(x1, x2) ) = max{0, x1 + x2 - 1}



The following usable rules [14] were oriented:

minus2(s1(X), s1(Y)) -> minus2(X, Y)
minus2(X, 0) -> 0



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
ACTIVATE1(n__zWquot2(X1, X2)) -> ZWQUOT2(X1, X2)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVATE1(n__zWquot2(X1, X2)) -> ZWQUOT2(X1, X2)
The remaining pairs can at least be oriented weakly.

ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( n__zWquot2(x1, x2) ) = x1 + x2 + 1


POL( ACTIVATE1(x1) ) = x1 + 1


POL( cons2(x1, x2) ) = x1 + x2


POL( ZWQUOT2(x1, x2) ) = x1 + x2 + 1



The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(XS)
ZWQUOT2(cons2(X, XS), cons2(Y, YS)) -> ACTIVATE1(YS)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial Order [17,21] with Interpretation:

POL( from1(x1) ) = max{0, -1}


POL( minus2(x1, x2) ) = max{0, -1}


POL( SEL2(x1, x2) ) = x1 + x2 + 1


POL( n__from1(x1) ) = max{0, -1}


POL( quot2(x1, x2) ) = max{0, -1}


POL( 0 ) = 1


POL( s1(x1) ) = x1 + 1


POL( zWquot2(x1, x2) ) = 0


POL( n__zWquot2(x1, x2) ) = max{0, -1}


POL( nil ) = max{0, -1}


POL( cons2(x1, x2) ) = x2


POL( activate1(x1) ) = x1



The following usable rules [14] were oriented:

activate1(n__from1(X)) -> from1(X)
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
from1(X) -> cons2(X, n__from1(s1(X)))
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
zWquot2(nil, XS) -> nil
activate1(X) -> X
zWquot2(XS, nil) -> nil
from1(X) -> n__from1(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
minus2(X, 0) -> 0
minus2(s1(X), s1(Y)) -> minus2(X, Y)
quot2(0, s1(Y)) -> 0
quot2(s1(X), s1(Y)) -> s1(quot2(minus2(X, Y), s1(Y)))
zWquot2(XS, nil) -> nil
zWquot2(nil, XS) -> nil
zWquot2(cons2(X, XS), cons2(Y, YS)) -> cons2(quot2(X, Y), n__zWquot2(activate1(XS), activate1(YS)))
from1(X) -> n__from1(X)
zWquot2(X1, X2) -> n__zWquot2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__zWquot2(X1, X2)) -> zWquot2(X1, X2)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.